Leneta - for Quality, Selection, Service

How to place an order:

Mail
The Leneta Company
15 Whitney Road
Mahwah, NJ 07430-3129
USA

Phone

(800) 663-6324
(201) 847-9300

8:30 AM to 5:00 PM
East Coast Time
Monday - Friday

Fax

(800) 663-5154
(201) 848-8833

Web
Email:leneta@leneta.com
Website: www.leneta.com

Easy Payment
 Leneta Accepts:
 American Express
 VISA
 Mastercard

Wire Transfers:

Fleet Bank, Wyckoff NJ USA
ABA Routing No. 021200339
Leneta Company
Account No. 4000013175

Credit Terms:

Net 30 days with approved credit.

Welcome to the Sixth Edition of The Leneta Company catalog of paint test charts, ink test sheets, test equipment and supplies.

What you'll find

Inside, you'll find sections devoted to each of our product lines, with descriptive and packaging information for each product. There's also an appendix that's packed with useful information such as ASTM Standards, U.S.-to-metric conversions and various film property equations.

Leneta - The Industry Standard

Since 1956, the Leneta name has been synonymous with high-quality test charts for the paint and coatings industry. As we've continued to evolve with the industry we serve, we've developed a unique combination of Quality, Selection and Service that's kept us the Standard in our field.

Quality

Leneta charts are characterized by their imperviousness wettability, adhesion, surface levelness and uniformity. They are produced from high quality, nonfluorescent paper, free of optical brighteners that may affect color measurements. The same uncompromising commitment to quality is brought to every product we offer.

Selection

Leneta produces the broadest line of test charts in the industry, along with an important selection of test equipment. From standard products like opacity and spreading rate charts, to specialty products like glass substrates and sag test blades, you'll find a unique selection in the Leneta Catalog.

Service

As the paint industry's oldest and foremost supplier of paint test charts, we have the knowledge and experience to help our customers select the most appropriate chart for their test applications. Worldwide representatives ensure prompt, reliable delivery.

Table of Contents

Sealed Paper Charts and CardsOpacity Charts 4
Penopac (Penetration-Opacity) Charts 5
Display Charts 6
Opacity-Display Charts 7
Checkerboard Charts. 8
Spreading Rate Charts 6, 7, 8
Duplex Applicator Charts 9
Brushout Cards - Black \& White 9
Plain White Charts and Cards 9
Plain Black Charts 9
Unlacquered Test Charts 10
Special Sealed Hiding Power Charts
Release Charts 11
Gray Scale Charts 12
Wall-Matte Charts 13
Spray Strips 14
Spray Monitors 15
Printing Ink and Paper
Printing Ink Drawdown Sheets 16
Leneta Paper-Testing Inks 17
Special Substrates
Birchwood 18
Upson Board 18
Polyester 19
Carrara Glass 20
Release Paper 20
Scrub Resistance
Leneta Scrub Test Panels 22
Leneta Calibration Scrub Test Panels 22
Leneta-ASTM Scrub Media 23
Leneta-ASTM Staining Media 23
Sag and Leveling
Leneta Anti-Sag Meter 24
Sag and Leveling Test Chart 24
Leneta Leveling Test Blade 25
Leneta Drawdown Levelness Standards 25
Metopac ${ }^{\text {TM }}$ (Metal) Panels, for baked and powder coatings 26
Hole Punch, for metal panels 27
Magnetic Spray Stand 27
Applicators - Blade Type
Trade Sales Applicators ("U" Shape) 28
Dow Film Caster 28
Bird Applicators 28
Multi-notch, 8 path, Logicator ${ }^{\text {TM }}$ 21
Applicators - Wire-Wound RodsLeneta Wire-Cators ${ }^{\text {TM }}$31
Auxiliary Application Equipment
Vacuum Plate and Pump 29
Leneta Drawdown Plates 30
Adjustable Straight Edges 30
Catch-Papers 30
Non-Stick Inter-leaf Paper 32
Paint-Out Starter Kit 32
Appendix 33

Code	Page	Code	Page	Code	Page	Code	Page
1A,B	5	21B	7	GW-1A,B	20	R7A, D	18
2A,C	4	23B	21	HK	5	RC-*	11
2DX	9	24B	12	HP-2	27	RP-1K	20
3B	4	26-1M,2M	13	IP-*	32	S71*	14
3NT-*	16	AAX*	19	LS-2	25	S72*	14
5 C	4	AB-*	28	LTB-2	25	SC-1,2	23
5DX,-GW	9	AD-1,2	27	M12*	15	SE-1,3	30
6F4,6	9	AD-710	28	M33*	15	SS-1	27
7B	24	AGX*	19	M71*	15	ST-1,3	23
8A,B	6	ASM-*	24	M72*	15	T12G,M	26
8H,-GW	6	AT-*	28	N2A	10	T22G,M	26
8 K *	6	B-3	9	N2C	10	TG-19	21
9A,B	7	BH,BK	9	N9A	10	TK-1,2	17
10A, B	8	CP-1	30	NWK	10	TK-100	17
10H,-BG	8	CP-2	25	P121-*	22	VP-0912	29
12 H	7	CU-1	12	P122-10N	22	VP-11560	29
13H	7	8A, B	6	P300-*	16,19	W^{*}	9
14H	4	DP-1	30	PS-*	36	W*X	9
15H	4	DP-2	25	PSK-1	32	WC-*	31
18A,B	5	DP-3	30	R1A, D	18	WP-1	10
19BR	5	GB-2A,B	20	R6-*	18		

[^0]Subject Index is on Page 37.

Opacity Charts

The term "Opacity Chart", as used in this catalog, refers to charts on which the test pattern is a simple combination of black and white areas, large enough for wide aperture reflectance instruments, as well as for visual opacity and color observations. Leneta opacity charts comply with all test methods specifying charts of such design.

Form 2A
$5-1 / 2 \times 10$ in $140 \times 254 \mathrm{~mm}$

Form 2C
$7-5 / 8 \times 10-1 / 4$ in
$194 \times 260 \mathrm{~mm}$

Form 5C
$7-5 / 8 \times 10-1 / 4$ in
$194 \times 260 \mathrm{~mm}$

Form 3B
$7-5 / 8 \times 11-3 / 8$ in
$194 \times 289 \mathrm{~mm}$

Form 15H
$11-1 / 4 \times 17-1 / 4 \mathrm{in}$ $286 \times 438 \mathrm{~mm}$

Form 14H
$11-1 / 4 \times 17-1 / 4$ in
$286 \times 438 \mathrm{~mm}$
Design Area $=1.076 \mathrm{ft}^{2}=0.1 \mathrm{~m}^{2}=1000 \mathrm{~cm}^{2}$

PACKAGING			
Form	Box	Boxes No.	Box Quantity
per Case	Weight		

LENBTA

Penopac and Penetration Charts

Form 1A
$5-1 / 2 \times 10$ in $140 \times 254 \mathrm{~mm}$

Form 1B
$7-5 / 8 \times 11-3 / 8$ in
$194 \times 289 \mathrm{~mm}$

Form 18A
$5-1 / 2 \times 10$ in $140 \times 254 \mathrm{~mm}$

Form 18B
$7-5 / 8 \times 11-3 / 8$ in
$194 \times 289 \mathrm{~mm}$

Penetration Chart

An important characteristic of architectural finishes is the ability to maintain a uniform appearance on surfaces of varying porosity. This ability, of which gloss and color uniformity are specific aspects, is referred to as penetration resistance. The adjacent sealed/unsealed areas of Leneta Form HK present severe conditions of varying porosity for testing penetration resistance. In addition to qualitative visual observations, photometric measurements on the two areas provide objective numerical values.

Penopac Charts

These combine the test areas and functions of a penetration and an opacity chart. They can be considered as universal test charts for research, development and quality control. The choices offered in size and design are responsive to individual laboratory needs and preferences. Form 19BR includes an unlacquered black area, but is otherwise equivalent in functionality.

Form 19BR
$7-5 / 8 \times 11-3 / 8$ in
$194 \times 289 \mathrm{~mm}$

Form HK
$8-5 / 8 \times 11-1 / 4$ in
$219 \times 286 \mathrm{~mm}$

Packaging

Packaging			
Form	Box	Boxes	Box
No.	Quantity	per Case	Weight
1A	250	6	6 lb
1B	250	4	9 lb
18A	250	6	6 lb
18B	250	4	9 lb
19BR	250	4	9 lb
HK	250	4	11 lb

Page 5

Display Charts / Spreading Rate Charts

These charts employ time-tested diagonally striped patterns, having a strong visual impact that emphasizes variations in film opacity. They are therefore frequently used for hiding power display purposes, by means of drawdowns or brushouts. Gray stripes in Forms $8 \mathrm{H}-\mathrm{GW}$ and $8 \mathrm{~K}-\mathrm{GW}$ provide reduced substrate contrast for use with low hiding power coatings. Spreading Rate Charts (Forms 8 H and $8 \mathrm{H}-\mathrm{GW}$) are accurately 0.1 square meters (approximately one square foot) in area, and are used in brushout hiding tests at specified spreading rates as described in ASTM Method D 344.

Form 8A
$5-1 / 2 \times 10$ in
$140 \times 254 \mathrm{~mm}$
Design Area $=275 \mathrm{~cm}^{2}$

Form 8B
$7-5 / 8 \times 11-3 / 8$ in
$194 \times 289 \mathrm{~mm}$
Design Area $=425 \mathrm{~cm}^{2}$

Form 8K
$8-5 / 8 \times 11-1 / 4$ in $219 \times 285 \mathrm{~mm}$
Design Area $=500 \mathrm{~cm}^{2}$

Spreading Rate Charts
Design Area $=1.076 \mathrm{ft}^{2}\left(1000 \mathrm{~cm}^{2}\right)$

Form 8H
$11-1 / 4 \times 17-1 / 4$ in
$286 \times 438 \mathrm{~mm}$

Form 8H-GW
$11-1 / 4 \times 17-1 / 4$ in
$286 \times 438 \mathrm{~mm}$

Form 8K-GW
$8-5 / 8 \times 11-1 / 4$ in $219 \times 285 \mathrm{~mm}$

Design Area $=500 \mathrm{~cm}^{2}$

PACKAGING			
Form	Box Buantity	Boxes per Case	Box Woight
8A	250	6	6 lb
8B	250	4	9 lb
8H	125	4	11 lb
8H-GW	125	4	11 lb
8K	250	4	11 lb
8K-GW	250	4	11 lb

Opacity-Display Charts / Spreading Rate Charts

Charts of this type combine the large, unbroken areas that are characteristic of Opacity Charts, with the striped design of a Display Chart. The larger areas permit wide aperture photometric measurements and visual color comparisons, while the striped area is uniquely effective for hiding power comparison and display. Spreading Rate Charts (Forms 12 H and 13 H) are accurately 0.1 square meters (approximately one square foot) in area, and are designed for brushout application at specified spreading rates.

Form 9A
$5-1 / 2 \times 10$ in
$140 \times 254 \mathrm{~mm}$

Form 9B
$7-5 / 8 \times 11-3 / 8$ in
$194 \times 289 \mathrm{~mm}$

Form 21B
$7-5 / 8 \times 11-3 / 8$ in
$194 \times 289 \mathrm{~mm}$

Spreading Rate Charts

Form 12H
$11-1 / 4 \times 17-1 / 4$ in
$286 \times 438 \mathrm{~mm}$

Form 13H
$11-1 / 4 \times 17-1 / 4$ in
$286 \times 438 \mathrm{~mm}$

Packaging			
Form	Box	Boxes	Box
No.	Quantity	per Case	Weight
9A	250	6	6 lb
9B	250	4	9 lb
12H	125	4	11 lb
13H	250	4	11 lb
21B	250	4	9 lb

Page 7

One of the earliest hiding power test surfaces was linoleum with a black and white checkerboard pattern. This was soon replaced by sealed paperboard charts of which Forms 10H and 10H-BG Spreading Rate Charts are typical examples. Designed for brushout tests at specified spreading rates such as in ASTM Method D 344 and Canadian 1-GP-71, they are also used for drawdown applications like their smaller counterparts Forms 10A and 10B. Black and gray squares in Form 10H-BG provide reduced contrast for testing coatings with lower hiding power.

Form 10A
$5-1 / 2 \times 10$ in
$140 \times 254 \mathrm{~mm}$
Design Area $=275 \mathrm{~cm}^{2}$

Form 10B
$7-5 / 8 \times 11-3 / 8$ in $194 \times 289 \mathrm{~mm}$
Design Area $=425 \mathrm{~cm}^{2}$

Packaging			
Form	Box Boantity	Ber Case Box	
Weight			

Spreading Rate Charts

Design Area $=1.076 \mathrm{ft}^{2}\left(1000 \mathrm{~cm}^{2}\right)$

Form 10H
$11-1 / 4 \times 17-1 / 4$ in
$286 \times 438 \mathrm{~mm}$

Form 10H-BG
$11-1 / 4 \times 17-1 / 4$ in
$286 \times 438 \mathrm{~mm}$

Brushout Cards

Nominal Thickness: 20 mils (0.5 mm)
Designed for informal brushout applications, the paper stock is almost twice the thickness of regular chart paper to give greater rigidity for more convenient handling. They are also used widely for drawdowns and colorimetric measurements.

Form No.	Box Quantity	Boxes per Case	Box Weight
2DX	500	4	7 lb
5DX	500	4	7 lb
5DX-GW	500	4	7 lb
WDX	500	4	7 lb

Duplex Applicator Charts

Originally made to be used with the "Duplex Applicator", an instrument designed for rapid production of side-by-side drawdowns, they now serve mostly as generic paint test charts.

Form	Charts		
No.	per Box	Boxes per Case	Box Weight
6F6	500	6	5 lb
6F4	500	6	5 lb
WF	500	6	5 lb

Form 6F6

Form 6F4

Form WF

Size: $3 \times 7-1 / 4$ inches ($76 \times 184 \mathrm{~mm}$)

Plain White Cards

Nominal Thickness: 20 mils (0.5 mm)

Plain White Charts
Nominal Thickness: 12 mils (0.3 mm)

Plain Black Charts

Nominal Thickness: 12 mils (0.3 mm)

Form No.	Inches	Size	Box Quantity	Boxes Per Case	Weight Per Box
*WBX	$7-5 / 8 \times 11-1 / 4$	194×286	125	4	7 lb
*WDX	$3-7 / 8 \times 6$	98×152	500	4	7 lb
WKX	$8-5 / 8 \times 11-1 / 4$	219×286	125	4	8 lb
WHX	$11-1 / 4 \times 17-1 / 4$	286×438	75	4	10 lb
*WA	$5-1 / 2 \times 10$	140×254	250	6	6 lb
*WB	$7-5 / 8 \times 11-1 / 4$	194×286	250	4	10 lb
*WD	$3-7 / 8 \times 6$	98×152	1000	4	10 lb
WF	$3 \times 7-1 / 4$	76×184	500	6	5 lb
WG	$3 \times 5-1 / 2$	76×140	1000	4	8 lb
WH	$11-1 / 4 \times 17-1 / 4$	286×438	125	4	11 lb
WK	$8-5 / 8 \times 11-1 / 4$	219×286	250	4	11 lb
WM	$5-1 / 2 \times 11-1 / 4$	140×286	250	6	6 lb
BK	$8-5 / 8 \times 11-1 / 4$	219×286	250	4	11 lb
BH	$11-1 / 4 \times 17-1 / 4$	286×438	125	4	11 lb
**B-3	$5-5 / 8 \times 32$	143×813	200	--	18 lb

[^1] Special sizes available upon request.
Page 9

For Test Applications of Clear Coatings and Stains

Unlacquered (semi-porous) surface simulates wood or unsealed wallboard.

Form N2A
$5-1 / 2 \times 10$ in
$140 \times 254 \mathrm{~mm}$

Form N9A
$5-1 / 2 \times 10$ in $140 \times 254 \mathrm{~mm}$

ALSO: FORM NWK, Plain white -- Size: $8-5 / 8 \times 11-1 / 4$ in (219 x 286 mm)

Wax and Polish
Test Chart

Form WP-1
$5-1 / 2 \times 10$ in
$140 \times 254 \mathrm{~mm}$

PACKAGING			
Form	Box	Boxes	Box
No.	Quantity	per Case	Weight
N2C	250	4	9 lb
N2A	250	6	6 lb
N9A	250	6	6 lb
NWK	250	4	11 lb
WP-1	250	6	6 lb

RC-5C

For rapid and precise hiding power measurements.

These charts have a unique surface which is readily wetted by waterborne or solventborne paints, but from which the dried film can easily* be stripped with adhesive tape. The stripping feature permits the dry film weight on a measured area to be determined precisely by weighing on an analytical balance before and after film removal. The spreading rate (H) and wet film thickness (T) can then be calculated from the following simple relationships:

$$
\begin{aligned}
& H\left(\mathrm{~m}^{2} / \mathrm{L}\right)=\frac{\mathrm{A}\left(\mathrm{~cm}^{2}\right) \cdot \mathrm{N} \cdot \mathrm{D}(\mathrm{~kg} / \mathrm{L})}{10 \mathrm{M}(\mathrm{~g})} \\
& \mathrm{H}\left(\mathrm{ft}^{2} / \mathrm{gal}\right)=40.746 \mathrm{H}\left(\mathrm{~m}^{2} / \mathrm{L}\right) \\
& \mathrm{H}\left(\mathrm{ft}^{2} / \mathrm{gal}\right) \times T(\mathrm{mils})=1604.2
\end{aligned}
$$

```
where: }\quad\textrm{H}=\mathrm{ spreading rate (m}\mp@subsup{}{}{2}/\textrm{L}),(\mp@subsup{\textrm{ft}}{}{2}/\textrm{gal})
T = wet film thickness ( }\mu\textrm{m}\mathrm{ ), (mils)
A = test area (cm2)
D = paint density (kg/L)
M = dry film weight (g)
N = non-volatile fraction by weight of the applied paint
```

This procedure represents a break-through in reduced time for precise measurement of spreading rate (or wet film thickness) in the determination of hiding power.

* Not so easily as to produce undamaged free films. For that purpose use Form RP-1K release paper described on page 20.

Form	Color	Dimensions	Box Quantity	Boxes Per Case	Weight Per Box
RC-5C	Black \& White	$7-5 / 8 \times 10-1 / 4 \mathrm{inch}$ $194 \times 260 \mathrm{~mm}$	250	4	9 lb
RC-BC	All Black	$7-5 / 8 \times 10-1 / 4 \mathrm{inch}$ $194 \times 260 \mathrm{~mm}$	250	4	9 lb

Gray Scale Charts

For Visual Hiding Power Ratings

Large-Area Roller or Brush Application

Form CU-1 Test Area $6 \mathrm{ft}^{2}\left(5574 \mathrm{~cm}^{2}\right)$
$24 \times 37-1 / 4$ in ($610 \times 946 \mathrm{~mm}$) Conforms with ASTM D5150, Hiding Power of Architectural Paints Applied by Roller

Drawdown Application

Form 24B
$7-5 / 8 \times 11-3 / 8$ in
$194 \times 289 \mathrm{~mm}$

Typical Drawdown Test on Form 24B

These are sealed paint test charts with six stripes on a white field, ranging in shade from very light gray to black. The stripes are numbered 1 to 6 , representing uniform steps of increasing contrast. The hiding power of the applied coatings is rated as the number of the darkest stripe that is completely (or almost completely) obscured, at a specified thickness or spreading rate. Form CU-1 is used for more practical large-area brush or roller applications as in ASTM D 5150. Applications on Form 24B are with a drawdown blade. See Appendix, Page 33 for gray scale values.

PACKAGING			
Form	Box	Boxes	Box
No.	Quantity	per Case	Weight
24B	250	4	9 lb
CU-1	100	1	50 lb

Large-area matte finish test surfaces for practical laboratory application testing of wall paints.
These charts are coated with a flat finish similar in texture and "tooth" to a typical trade sales flat wall paint. Paints can be applied by brush or roller with assurance that there will be no surface "skid" during application. The surface is well sealed so that both waterborne and solventborne coatings can be applied with no penetration of vehicle into the substrate.

Wall-Matte Charts are an effective replacement for previously available Kem-Glo Test Paper and superior to that product in imperviousness and paper rigidity.

Form 26-1M
20×28 in
$508 \times 711 \mathrm{~mm}$
Area: $3.9 \mathrm{ft}^{2}\left(0.36 \mathrm{~m}^{2}\right)$

Form 26-2M

28×40 in
$711 \times 1046 \mathrm{~mm}$
Area: $7.8 \mathrm{ft}^{2}\left(0.72 \mathrm{~m}^{2}\right)$

Physical Data

Thickness: 12 mils $(300 \mu \mathrm{~m})$ prox.
Reflectance: White $83 \pm 3 \%$, Gray $46 \pm 3 \%$
60° Gloss: 2 prox.
85° Gloss: 2 prox.

Packaging

Form	Box No.	Box Quantity
Weight		
$26-1 \mathrm{M}$	125	32 lb
$26-2 \mathrm{M}$	100	50 lb

Spray Strips

Hiding Power Charts for OEM Coatings

These are used by industrial coatings laboratories, principally those involved with the automotive industry, to measure the hiding power of spraying enamels. The chart is attached to a steel panel and the test coating sprayed to produce a "wedge" varying from thin at one end to thick at the other. After drying, a location on the chart of adequate visual hiding or 0.98 contrast ratio is determined, and the film thickness measured electronically on the steel panel adjacent to that location. Conversely, a location of specified thickness is determined on the steel panel and the Contrast Ratio measured adjacent to that location.

Form $\mathbf{S 7 1}$
Black \& White

Form S71-BG
Black \& Gray
also
Form S71-RG
Red \& Gray

Form S72
Black \& White

Form S72-BG Black \& Gray

PACKAGING: 500 per box - 4 boxes per case _ box wt. 5 lb

Spray Monitors

Self-Adhering Hiding Power Labels

These are pressure sensitive labels with a hiding power test pattern and a sealed, solvent-resistant surface. They are used primarily with metal panels on which the uniform surface provides no visual clue as to the thickness of an applied paint film. When placed on such a surface the Monitor presents a contrasting feature by which to observe the hiding during spray application, thereby facilitating film thickness control. It adheres firmly whether air-dried or baked, to present a permanent visual record of film opacity. The longer Monitors, M71 and M72, permit wedge application, with thickness and hiding power determination, as described with Spray Strips (see page 14).

Form M33
Black \& White

ALSO
Red \& Gray
Form M12-RG
Form M33-RG

Form M12 Black \& White

Size 1×1 in $25 \times 25 \mathrm{~mm}$

Form M12-BG Black \& Gray

Form M71
Black \& White

Form M71-BG
Black \& Gray

Form M72
Black \& White

Form M72-BG Black \& Gray

Available in nine different grades of paper, these sheets provide a variety of sul strates for testing ink qualities. They are also useful for testing other coating because of their range in absorbancy and texture.

Sheet Size: $5 \times 7-5 / 8$ in (127 $\times 194 \mathrm{~mm}$)
Paper: Non-fluorescent. Unwatermarked
Ink: Jet black. Non-bleeding.
Padding: 100 sheets per pad.
Packaging: 1000 sheets (10 pads) per box

Paper Description ${ }^{1}$ and Form Number Identification

Form Number	3NT-1	3NT-2	3NT-3	3NT-4	3NT-5	3NT-6	3NT-7	3NT-8	3NT-94
Paper Type	Vellum Opaque	Translucent Bond ${ }^{2}$	Coated Book	Regular Bond	Unbleached Kraft	Transparent Bond ${ }^{2}$	Newsprint	Web Offset Coated	Box Laminate
Shade	Neutral White	Neutral White	Neutral White	Neutral White	Brown	Neutral White	Cream White	Neutral White	Mottled White
Basis Ream Weight ${ }^{3}$	60 lb	15 lb	80 lb	20 lb	40 lb	14 lb	32 lb	45 lb	125 lb
Basis Sheet size (in)	25×38	17×22	25×38	17×22	24×36	17×22	24×36	25×38	14×36
Poundage ($\mathrm{lb} / \mathrm{Mft}^{2}$)	18.2	11.6	24.2	15.4	13.3	10.8	10.7	13.6	41.7
Grammage ($\mathrm{g} / \mathrm{m}^{2}$)	89	56	118	75	65	53	52	67	203
Caliper (mils)	5.0	2.5	3.7	3.9	4.0	2.0	3.0	2.5	10.0
Caliper ($\mu \mathrm{m}$)	127	64	94	99	102	51	76	64	254
Density ($\mathrm{g} / \mathrm{cm}^{3}$)	0.70	0.89	1.26	0.76	0.64	1.04	0.68	1.05	0.80
Boxes per case	5	6	6	6	5	6	6	6	4
Box weight (lb)	6	4	8	5	5	5	4	5	3

Available on request: Forms 3NT-3 and 3NT-4 in special sizes for ink proofers, printed or unprinted.
Notes: 1. Indicated weights, densities and calipers are nominal and/or approximate.
2. These papers are absorbent despite their high level of transparency.
3. Ream of 500 basis sheets.
4. This is a laminate of white on brown kraft paper, representative of white corrugated box surfaces, and showing a typical mottled appearance. 500 sheets/box, unpadded.

Clear Polyester Overlay Sheets

Same Size as Printing Ink Drawdown Sheets.

Form No.	Thickness	Box Quantity	Boxes Per Case	Box Weight
P300-4NT	4 mil $(100 \mu \mathrm{~m})$	250	4	3 lb
P300-7NT	7 mil $(178 \mu \mathrm{~m})$	250	4	4 lb

See Page 19 for the complete range of available sizes and thicknesses.

For Evaluating Mottle, Holdout and Porosity of Coated and Uncoated Papers

Item No. TK-1 : High Penetration for Coated Papers Item No. TK-2 : Low Penetration for Uncoated Papers

These testing inks provide a simple and rapid way of monitoring batch-to-batch variations in paper structure and porosity. Inks of both high and low penetrations are required because the penetration quality of the ink must be appropriate to the holdout of the paper surface being tested. Coated papers, being relatively high in holdout, require a high penetration ink to obtain a sufficiently strong color and mottle pattern. Uncoated papers, being low in holdout, require a low penetration ink to avoid excessively strong color that would overwhelm any mottle or holdout distinctions. Examples of test patterns obtained using the two inks, demonstrating their specialized nature, are as follows:

Test Procedure: Spread the ink on the paper to be tested using a spatula or drawdown applicator (see TK-100 Applicator below). After one minute remove the ink by first scraping off most of it with a straight edge, then wiping away the remainder carefully with a clean paper towel. The resultant test pattern is characterized visually for mottle and porosity. To obtain an instrumental value for porosity, measure the CIE-Y reflectances, or the densitometer values, of the stained and unstained areas, then calculate:

$$
\begin{aligned}
& \frac{\text { Porosity Index (Holdout) }}{100}=\frac{Y_{\text {unstained }}-Y_{\text {stained }}}{Y_{\text {unstained }}}=\frac{10^{\Delta D}-1}{10^{\Delta D}} \\
& \text { Where } \quad D=\text { densitometer value and } \Delta D=D_{\text {stained }}-D_{\text {unstained }}
\end{aligned}
$$

PACKAGING

TK-1	118 mL	(227 grams -- 1/2 lb) per jar
TK-2	118 mL	(151 grams -- 1/3 lb) per jar
		ars per case

Item No. TK-100: Applicator for Paper-Testing Inks

Constructed of aluminum, this low cost applicator is designed specially for use with Leneta Testing Inks. One edge has a $10 \mathrm{mil}(250 \mu \mathrm{~m})$ clearance and applies a 3 inch (75 mm) wide film. The opposite edge can be used as a convenient scraper.

Dimensions: 5 in $\times 2$ in $\times 1 / 8$ in ($127 \mathrm{~mm} \times 51 \mathrm{~mm} \times 3 \mathrm{~mm}$)

Special Substrates

Wood Panels - Birch: This type of hardwood is light in color with an attractive grain, making it particularly suitable for color matching and demonstration of stains.

R6-1224
R6-1224
R6-1218

Upson Board - Fiberboard Panels

Fiberboard panels, $3 / 16$ inch thick, provide a surface appropriate for test applications of wall paint.

| Form | Size | | Box
 No. | inches |
| :--- | :---: | :---: | :---: | :---: |\quad| Weight |
| :---: |
| Quantity |\quad| Per Box |
| :---: |

P300-1K
P300-2K

P300-4C
P300-7C
P300-4NT
P300-7NT
P300-4G
P300-7G

Clear Polyester

This clear film can be used as a substrate for the application of a coating and viewed for transmitted appearance properties including color, gloss and transparency, or placed over a black and white background for evaluation of hiding power. In addition, it is used as an overlay to protect a drawdown after drying, without obscuring visibility.

Form No.	Thickness			
mils	$\mu \mathrm{m}$		inches Size $\quad \mathrm{mm} .$	Box
:---:				
Quantity		Boxes		
:---:				
Per Case		Weight		
:---:				
Per Bo				

If you would like a size other than those shown above, please contact us for a quote

Alu-Cards - Aluminum foil laminated to paperboard panels

These are low cost metallic substrates to replace expensive solid metal panels when the primary interest is in appearance. The test surface has a high metallic luster. The cards are 18 mils (0.46 mm) thick and have a $1 / 4$ inch $(6.4 \mathrm{~mm})$ diameter hole punched in one end. In addition to lower cost, a major advantage over regular metal panels is that they are much lighter in weight and therefore more conveniently stored. See page 27 for Spray Stand and Adapters used in spray applications on these panels.

Form No.		Size		Box Quantity	Boxes Per Case	Weight Per Box
		inches	mm			
AAX-1P	Primed ${ }^{1}$	$5-1 / 2 \times 10$	140×254	125	6	5 lb
AAX-2N	Unprimed ${ }^{2}$	$5-1 / 2 \times 10$	140×254	125	6	5 lb
AGX-1P	Primed ${ }^{1}$	$3 \times 5-1 / 2$	76×140	500	6	6 lb
AGX-2N	Unprimed ${ }^{2}$	$3 \times 5-1 / 2$	76×140	500	6	6 lb

1. Clear organic primer for improved adhesion
2. Foil both sides for minimum bake distortion. Bright side is conductive.

GW-1B

Carrara* Glass Panels - Approximately 0.25 inch (6 mm) thick
Black glass is used in widely referenced high-precision ASTM Method D 2805, and related hiding power test methods. After measuring the reflectance R_{0} of the dry film, a defined area is scraped from the glass and weighed to obtain the spreading rate or original wet film thickness. R_{∞} of the paint film is obtained from a separate test application. The hiding power is then calculated from the appropriate KubelkaMunk equations found in the ASTM method.
Both black and white Carrara glass panels are used in U.S. Federal Test Method 141-4122 and CGSB Method 1-GP-71-14.7 for measuring hiding power. The latter method also provides for direct wet film thickness measurements using a Pfund or Interchemical type of wet film thickness gage, as described in ASTM Method D 1212.

These methods depend on the unique hardness and levelness characteristics of glass substrates. Leneta black Carrara glass is much superior in levelness to previously available striated types.

	White One Side Striated	Black Unstriated - Blacklite**	Size	Box Quantity	Weight Per Box
Item No.	GW-1A	GB-2A	$\begin{gathered} 8 \times 8 \text { in } \\ 200 \times 200 \mathrm{~mm} \end{gathered}$	1	2 lb
Item No.	GW-1B	GB-2B	$\begin{gathered} 8 \times 12 \mathrm{in} \\ 200 \times 300 \mathrm{~mm} \end{gathered}$	1	3 lb

* Carrara: Term used originally in referring to the white marble obtained from quarries near the town of Carrara in central Italy; later applied to heavy architectural glass, both black and white.
** Blacklite: Refers to Leneta type of black Carrara glass
NOTE: Although visually not as opaque as true Carrara Glass, Blacklite Glass has a transmission of less than 1%, making it an adequate substitute for Carrara Glass.

Release Paper

Release Paper - For preparing free films of organic coatings

RP-1K

This paper is sealed on both sides, one side glossy and the other matte. The glossy side has a silicone finish with balanced release, to avoid excessive crawling of solventborne or waterborne coatings, while permitting easy stripping of dried films. It is recommended in ASTM D 4708 "Standard Practice for Preparation of Uniform Free Films of Organic Coatings" and can be used to prepare test films for ASTM D 2370 "Tensile Strength of Organic Coatings", ASTM D 1653 "Water Vapor Transmission of Organic Coatings Films", and other free-film test methods.

Form	Size	Thickness	Box Quantity	Boxes Per Case	Weight Per Box
No.	RP-1K	$8-5 / 8 \times 11-1 / 4$ in $219 \times 286 \mathrm{~mm}$	5 mil $127 \mu \mathrm{~m}$	250	4

[^2]Item TG19: A Geometric-Sequence Multi-Notch Applicator, designed for rapid visual hiding power measurements. Conforms with ASTM Method D 5007, Wet-toDry Hiding Change.

Description: This unique drawdown blade applies a series of stripes with thicknesses in equal percentage steps, to permit single-drawdown exploration of the widest practicable application range. In addition to the hiding level of the coating, it also facilitates examination of the effect of film thickness on drying speed and surface uniformity, allowing a quick characterization of the essential features of the coating. The individual stripes are identified by "INDEX" numbers (20 to 48) engraved on the instrument, and also printed on the Form 23B Logicator Chart designed for use with this applicator. The Index Numbers are in equal numerical steps corresponding to increments of approximately 20% in notch clearance, film thickness and spreading rate, as shown in the following table:

				NU	ER			
	20	24	28	32	36	40	44	48
		WE	FILM	ICKN	SS	T.)*		
mils $\mu \mathrm{m}$	$\begin{aligned} & 5.7 \\ & 145 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 120 \end{aligned}$	3.9 98	$\begin{aligned} & 3.2 \\ & 81 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 67 \end{aligned}$	2.2 55	1.8 45	1.5 37
			NOT	E	ANCE			
mils	10.40	8.56	7.04	5.79	4.76	3.92	3.23	2.65
$\mu \mathrm{m}$	264	217	179	147	121	100	82	67
			SPR	DING	ATE*			
$\mathrm{ft}^{2} / \mathrm{gal}$	280	341	414	504	612	744	904	1100
$\mathrm{m}^{2} / \mathrm{L}$	6.9	8.4	10.2	12.4	15	18	22	27

Test Procedure: After the applied coating has dried, the operator locates the critical stripe visually or photometrically and encircles the parameter of interest, as illustrated. It is generally accepted that the hiding power end-point is not total visual extinction, but a degree of contrast just short of complete hiding, corresponding to a photometric contrast ratio of 0.98 .

ASTM D 5007: In this standard the hiding power of the wet film and then of the dry film are observed visually, and the percentage increase or decrease is reported.

PACKAGING

	Box Quantity	Boxes Per Case	Box Weight
Item TG-19	1	--	1 lb
Form 23B	250	4	9 lb

Black Plastic-Vinyl Chloride/Acetate Copolymer
Smooth Matte Surface - Plasticizer Free

Thickness: 10 mils (0.25 mm) - Size: $6-1 / 2 \times 17$ in ($165 \times 432 \mathrm{~mm}$) Used in ASTM D 2486, ASTM D 4213, ISO 11918 and Other Scrub Test Methods.

Form P121-10N

In a typical scrub test, the coating is applied to the Leneta Scrub Test Panel at a specified film thickness, allowed to dry, then subjected to scrubbing with a straight-line scrub tester. In ASTM D 2486, a 10 mil shim is inserted under the panel to accelerate failure and thereby reduce testing time. The scrub resistance is the number of scrub cycles required to remove the coating to a specified end point.

Alternatively, the loss in weight is determined after a specified number of scrub cycles as a measure of scrub resistance, with calculation of equivalent loss in film thickness.

Fig. 1 Typical Failure Using Shim per D2486, Method A.

Fig. 2 Typical Failure Without Shim

The above photographs show actual tests of latex flat paints. Note that the films have worn down to a feather edge, with no sign of adhesion failure

ALSO AVAILABLE: WHITE SCRUB TEST PANELS - FORM P122-10N Used with dark colored paints for contrast. Same physical properties as Form P121-10N.

PACKAGING: 100 per box, 5 boxes per case.

Leneta Calibration Scrub Test Panels

Form P121-A,C,D

Form P121-A Poor Scrub Resistance
* 80 cycles-to-failure

Form P121-C
Good Scrub Resistance
* 400 cycles-to-failure

Form P121-D
Very Good Scrub Resistance

* 900 cycles-to-failure
* Typical Values per ASTM D2486, Method A

These are standard panels prepared by applying white emulsion paints on black scrub test panels. The films are indefinitely stable and the panels of each type essentially identical. They are used as controls in the measurement of scrub resistance, to obtain Calibration Ratings that normalize the wide variations often encountered for undefined reasons, among laboratories using the same scrub method. The Calibration Rating is the performance of the test paint panel expressed as a percentage relative to that of the selected Calibration Panel. Thus:

$$
\text { \% Calibration Rating }=\frac{\text { Test Panel Cycles-to Failure }}{\text { Calibration Panel Cycles-to-Failure }} \times 100 * *
$$

** The letter indicating the calibration panel type is appended to the calibration rating, e.g. 125A, 65C, 95D etc.

Illustrates simultaneous side-by-side scrubbing of half-panels to maximize correlation, analogous to ASTM D 2486, Method B.

NOTE: See also ASTM D 4213 "Weight Loss Method" whereby:
Calibration Rating $=\frac{\text { Calibration Panel Weight Loss }}{\text { Test Panel Weight Loss }} \times 100$
PACKAGING: 3 per box, 4 boxes per case.

Leneta-ASTM Scrub Media

Non-Abrasive Type
Item No. SC-1
Used in ASTM Method D3450, Test for Washability Properties.

Abrasive Type
Item No. SC-2
Used in ASTM Method D2486, D4213 and D3450, Scrub Resistance and Washability Tests.

These are aqueous dispersions of detergent, cellulosic thickener and preservative, made in conformance with and approved for use in the indicated ASTM methods. The abrasive type contains ground silica for accelerated erosion. The two compounds are representative of the detergent and abrasive character of commercial cleaning products. Because of the variable nature of their ingredients, The Leneta Company provides media adjusted and tested to assure batch-to-batch uniformity. Each container is fully identified by batch number and shipping date. The contents of unopened containers are guaranteed standard in performance for a year, which is highly conservative on the basis of observed package stability.

Supplied in pint (473 mL) jars, sufficient for about 40 tests.
Weight per jar: $2 \mathrm{lb}, 8$ jars per case

Leneta-ASTM Staining Media

Pigmented Type
Item No. ST-1
Used in ASTM Method D 3450, Test for Washability Properties

This is a finely ground dispersion of high jet carbon black in a blend of mineral oil and odorless mineral spirits. It is specified in ASTM D3450 to meet the laboratory requirement for a reproducible composition of matter, representative in a general way of soilants encountered in the field.

ST-1

Penetrating Dye Type
Item No. ST-3
Recommended for ASTM Method D 3258, Test for Stain Resistance and Porosity

This is a proprietary composition of pigment and darkcolored dye dispersed in an organic liquid vehicle. When applied and then removed from a paint film, the intensity of the resultant stain indicates the degree of film porosity. ST-3 is more effective than other media recommended for this purpose.

ST-3
Both media have perfect package stability and are manufactured and control tested to assure batch-to-batch uniformity. Their usefulness extends not only to ASTM tests, but to any soil and stain removal test procedure.

Supplied in $4 \mathrm{fl} . \mathrm{oz}$. (118 mL) cans or jars.
Weight per jar: 1/2 lb, 4 jars per case
Page 23

USED IN ASTM D4400, TEST METHOD FOR SAG RESISTANCE OF PAINTS

This is a drawdown blade with a series of notches of successively higher clearance. The notch clearance is related to the degree of sagging and provides a numerical value referred to as the Anti-Sag Index. The higher the Anti-Sag Index the better the sag resistance of the coating. The development of this instrument and its versatility for control and research have been described in published reports. ${ }^{1.2}$ The Anti-Sag Meter is called for in ASTM ${ }^{3}$ and Federal ${ }^{4}$ test methods and is essential equipment in paint laboratories in the U.S.A. and throughout the world. Fig. 1 shows a typical test obtained with this applicator. See Appendix (page 35) for test method details.

1. Official Digest (JCT), October 1962
2. ASTM Method D 4400
3. Official Digest (JCT), January 1964
4. U.S. Fed, No. 141 Method 4494

Fig. 1 - The Medium Range Anti-Sag Meter

Fig. 2 - Typical Test Pattern
This test was made with the Medium Range Anti-Sag Meter. The test surface is a Form 7B Sag \& Leveling Chart.

Anti-Sag Meters Available From Stock

Item No.	Range	For Coating Type:
ASM-1	Standard	Solventborne Architectural
ASM-2	Low	Industrial O.E.M. Coatings
ASM-3	High	High Build Coatings
ASM-4	Medium	Waterborne Architectural

mils	3	4	5	6	7	8	9	10	11	12	
$\mu \mathrm{~m}$	78	100	125	150	175	200	225	250	275	300	
mils	1	1.5	2	2.5	3	3.5	5	4.5	5	5.5	6
$\mu \mathrm{~m}$	25	38	60	63	75	88	100	113	125	138	150
mils	14	15	18	20	25	30	35	40	45	50	60
$\mu \mathrm{~m}$	350	400	450	500	625	750	875	1000	1125	1250	1500
mils	4	6	8	10	12	14	16	18	20	22	24
$\mu \mathrm{~m}$	100	150	200	250	300	350	400	450	500	550	600

* Mils are exact. Wet film thickness is about half of the clearance.

Sag and Leveling Test Chart

This form was designed for use with the Leneta Anti-Sag Meter and finds additional use with the Leneta Leveling Test Blade (see page 25). Its special characteristic is the provision of an applicator path with a considerable length of black in the middle. Thus by making test observations only over the black area, there is automatic compliance with instructions to ignore the leading and trailing edges of the drawdown. See the Appendix (page 35).

	PACKAGING			
Form	Size	Box	Boxes	Weight
No.		Quantity	Per Case	Per Box
7B	$7-5 / 8 \times 11-3 / 8 \mathrm{in} .(194 \times 289 \mathrm{~mm})$	250	4	9 lb.

Fig. 2 Details from the engineering drawing. Dimensions are in millimeters. Plastic arms are illustrated in Fig. 1 above.

Fig. 3 Drawdown Levelness Standards under oblique light, as described in ASTM D 4062.

Fig. 4 Application with the Leneta Leveling Test Blade. Illustrates use of Drawdown Plate and Catch-Papers.

Used in ASTM D 4062, Test for Leveling of Paints

Leneta Leveling Test Blade
Item No. LTB-2

This is a threaded stainless steel rod that functions as a grooved doctor blade at any part of its circumference. It produces a film with parallel ridges and valleys in simulation of brush marks. Critical dimensions are indicated in the diagram. Plastic arms in conjunction with straight-edge guides assure rectilinear drawdown movement (see DP-2 Leveling Test Drawdown Plate below). Advantages over brushout application tests are speed, reproducibility, and a regular surface pattern that facilitates evaluation. The leveling of films applied in this manner correlates well with brushout leveling.

The diagram shows alternating clearances of 300 and $100 \mu \mathrm{~m}$ (12 and 4 mils), to apply alternate stripes of 150 and $50 \mu \mathrm{~m}$ (6 and 2 mils) thickness. Thus the mean wet film thickness of the test drawdown will be about $100 \mu \mathrm{~m}$ (4 mils), corresponding to a spreading rate of $10 \mathrm{~m}^{2} / \mathrm{L}\left(400 \mathrm{ft}^{2} / \mathrm{gal}\right)$.
The detailed method is described in the Appendix, Page 35.

Leneta Drawdown Levelness Standards Item No. LS-2

These are 3-dimensional true scale replicas of drawdowns made with the Leneta Leveling Test Blade, using a series of nine paints ranging from extremely poor to good leveling. The primary standards are durable metal plates from which replicas are pressed in the form of 3×5 in ($75 \times 125 \mathrm{~mm}$) white vinyl panels. They are numbered 1 through 9 from poorest to best leveling. Perfect leveling is 10 and poorer than 1 is zero. Evaluation of drawdowns prepared with the Leneta Leveling Test Blade is readily accomplished by visual comparison in oblique light. The number of the matching standard is the Leveling Value of the paint. Further information with regard to the significance of these values is provided in the Appendix, Page 35.

Leveling Test Drawdown Plate

 Item No. DP-2 This drawdown plate was designed for use with the Leneta Leveling Test Blade in ASTM Method D 4062. Its construction features include edge guides, to assure that straight parallel stripes are obtained from the rapid blade movement called for in the test method. It also includes peg stops that automatically terminate the blade movement in the correct location at completion of the drawdown.
"Catch-Papers"

 Form CP-2These are thin lacquered sheets, size $3 \times 7-1 / 4 \mathrm{in}$, for catching surplus paint at the end of the drawdown. This form was designed specifically for use with the Leveling Test Drawdown Plate, being cut to size and hole punched accurately for that purpose.
Packaging: 1000 sheets/box

Painted Steel Panels for Measuring the Hiding Power of Powder Coatings and Industrial Enamels

T22M

Black Surface: Solvent resistant, Non-bleeding, Reflectance - 1\% maximum* White Surface: Solvent Resistant, Color Retentive, Reflectance - 80\% minimum*

* Measured using ASTM Method E 1347

Form No.	Color	Area**	Size	$\begin{gathered} \text { Box } \\ \text { Quantity } \end{gathered}$	Boxes Per Case	Weigh Per Bo
T12G	Black \& White	$100 \mathrm{~cm}^{2}$	$\begin{aligned} & 3 \times 5-3 / 16 \mathrm{inch} \\ & 76 \times 132 \mathrm{~mm} \end{aligned}$	125	4	8 lb
T22G	Black	$100 \mathrm{~cm}^{2}$	$\begin{aligned} & 3 \times 5-3 / 16 \mathrm{inch} \\ & 76 \times 132 \mathrm{~mm} \end{aligned}$	125	4	8 lb
T12M	Black \& White	$368 \mathrm{~cm}^{2}$	$5-3 / 16 \times 11$ inch $132 \times 279 \mathrm{~mm}$	50	4	4 lb
T22M	Black	$368 \mathrm{~cm}^{2}$	$5-3 / 16 \times 11$ inch $132 \times 279 \mathrm{~mm}$	50	4	2 lb

Major uses include:
ASTM Method D 6441 -- Measuring the Hiding Power of Powder Coatings -- A wedge shape film is applied on a T12G or T12M panel. Points of specified film thickness are located over the black and white areas, reflectances are measured and the mean contrast ratio at that film thickness is calculated. Alternatively, several black/white pairs of equal-thickness points at various film thicknesses are located, and the calculated contrast ratio plotted graphically against the film thickness to obtain the film thickness at a contrast ratio of 0.98 . In this method the reflectance is measured with a small diameter aperture (e.g. 4 mm), and the film thickness with an electronic film thickness gage.

Powder Coatings Institute Method -- In this method the film thickness is determined directly on a T12G panel at 0.98 Contrast Ratio. Alternatively, the Contrast Ratio is determined at a specified film thickness. Reflectance and film thickness instrumentation are as in ASTM D 6441.

ASTM Method D 2805 -- Hiding Power of Paints by Reflectometry -- The film is applied uniformly over a T22G all black and a T12G black and white panel. The filmweight and reflectance R_{0} are determined on the all black panel, and the reflectivity R_{∞} of the coating determined on the black and white panel. The gravimetric spreading rate at 0.98 Contrast Ratio is then calculated using Kubelka-Munk equations. Conversion to volumetric spreading rate or to film thickness is readily accomplished.

Item HP-2 Hole Punch

Some test panels might not have a hole and others might come with a hole, but not where you want it. Presently available punches require awkward hand-held type operation, or must be bolted to a specific site. Leneta offers a convenient alternative, combining ease of operation with mobility in the workplace.

The Leneta HP-2 is designed to punch $1 / 4$ inch diameter holes in steel panels up to 20 mils in thickness with one-hand operation. This free standing hole punch is mounted on a 5×12 inch base that holds firmly to any flat support surface. Punch-out chips are captured in a cup that is easily removed for emptying.

Comes complete with a $1 / 4$ inch punch/die pair. Also available with punch/die pairs from $1 / 16$ to $9 / 32$ inch in $1 / 32$ inch increments.

Item No.	Box	Weight
Quantity	Per Box	
HP-2	1	5 lb

Item SS-1 Magnetic Spray Stand

Laboratory spray stands are often unsteady devices, thickly coated with overspray. The Leneta Magnetic Spray Stand provides stability, tidiness, and general convenience. Its design is simple: two small but powerful pot magnets are mounted at one end of a curved steel rod. The other end of the rod is screwed into a heavy steel base. Overall height is approximately thirteen inches. Steel panels 6 x 12 inches and larger are held firmly during spraying and then easily removed. The magnets remain clean, being protected from overspray by the panel. Other parts of the device are readily cleaned by soaking in paint remover or caustic solution.

Item No.	Box	Weight
Quantity	Per Box	
SS-1	1	11 lb

Alu-Card Adapter

The magnetic spray stand can be used with Alu-Cards (see page 19) or other non-magnetic panels by employing one of the steel adapters designed for that purpose. It provides a small peg from which the Alu-Card hangs, steadied by side arms to prevent the card from blowing off in the spray stream. It is available in two sizes, corresponding to the standard sizes in which Alu-Cards are supplied.

Packaging			
Item	Use With	Inches	Millimeters
		$5-1 / 2 \times 10$	140×254
AD-1	Size A Cards	$5-1 / 2$	76×140

Also referred to as "Drawdown Bars" or "Doctor Blades", they apply a wet film thickness approximately half their gap clearance. They are essential laboratory equipment for making uniform and reproducible applications on Leneta Charts and other surfaces.

Trade Sales Applicators ("U"-Shape)

Each of these instruments has a 6 mil and an 8 mil gap clearance, laying down wet film thicknesses of approximately 3 and 4 mils, respectively. These are the thicknesses most often recommended for the testing of solventborne and waterborne architectural coatings, hence their characterization by Leneta as "Trade Sales" applicators. The film widths of 4 and 6 inches take advantage of the most popular Leneta test chart widths of $5-1 / 2$ and $7-5 / 8$ inches. Their "U"shape structure retains a substantial volume of test coating to assure completeness of drawdowns.

Item	Film Width	Gap Clearances (mils)	Wet Film Thickness (mils)	Spreading Rate (ft²/gal)
AT-684	4 in	6	3	535
		8	4	400
AT-686	6 in	6	3	535
		8	4	400

Dow Film Caster
This Applicator was originally designed for latex paint scrub test procedures on a $6-1 / 2 \times 17 \mathrm{in}$. glass surface, in which a $3-1 / 2$ mil thick test coat is applied over a 5 mil primer. Although the use of primed glass in tests of this type has been largely discontinued, the applicator continues to be widely used for its individual clearances.

Item	Film Width (inches)	Gap Clearance (mils)	Wet Film Thickness (mils)	Spreading Rate $\left(\mathrm{ft}^{2}\right.$ /gal)
AD-710	$5-1 / 4$	7	$3-1 / 2$	460
	$5-1 / 2$	10	5	320

Bird ${ }^{\circledR}$ Applicators

Bird Applicators are specified by their film width and the approximate wet film thickness they are intended to apply. The latter value is engraved at one end of the applicator. To calculate the approximate spreading rate in square feet per gallon, divide 1604 by the indicated wet film thickness.

Film	Wet Film Thickness*		
Width	$\mathbf{2}$ mils	$\mathbf{3}$ mils	$\mathbf{4}$ mils
2 in	$\mathrm{AB}-42$	$\mathrm{AB}-62$	$\mathrm{AB}-82$
3 in	$\mathrm{AB}-43$	$\mathrm{AB}-63$	$\mathrm{AB}-83$
3.5 in	$\mathrm{AB}-435$	$\mathrm{AB}-635$	$\mathrm{AB}-835$
6 in	$\mathrm{AB}-46$	$\mathrm{AB}-66$	$\mathrm{AB}-86$

* Approximately half the gap clearance.

Page 28

Vacuum Plate - perforated

This is a flat, perforated aluminum plate, with a 9 " $\times 12$ " surface, on which hiding power charts and other flexible surfaces may be placed and held flat during application of coatings. The surface is large enough to accommodate all Leneta chart sizes up to $8-5 / 8 \times 11-1 / 4$ inches.

Item	Size	Weight
VP-0912	$9 \times 12 \times 2$ in	6 lb

Vacuum Pump

VP-11560
This motor mounted rotary vane vacuum pump provides a vacuum of up to 26 in Hg and up to 4.5 cfm air flow, sufficient to hold any of the Leneta Charts or Cards. The vacuum level is readily adjustable for use with thin substrates to avoid "dimpling".

Includes: Vacuum Pump with $115 \mathrm{~V}, 60 \mathrm{~Hz}, 1 / 3 \mathrm{hp}$ motor
Vacuum Gage (inches of Hg)
Vacuum Regulator
Non-Skid Feet
Filter
Muffler
Oil
Power Cord with Plug and Switch
Vacuum hose, 5 ft length of polyester cord reinforced PVC

Item	Size	Weight
VP-11560	$12 \times 7 \times 6$ in	20 lb

Drawdown procedure using straight-edge and catch-paper.

Leneta drawdown plates consist of a glass clipboard set firmly on a phenolic plastic panel and mounted on rubber bumpers to prevent sliding while in use. The drawdown surface is 6 mm (1/4 inch) thick polished glass, equal in planarity to fine mirror glass. A steel clip holds the test chart or panel steady while the drawdown is made. These devices provide economical and convenient means for making drawdowns of uniform film thickness. They are easy to use, easy to keep clean, and extremely helpful in every paint and coatings laboratory.

Item DP-1 Leneta Drawdown Plate - Regular

For general use with Leneta Charts and panels
Glass Surface: 9×15 in ($230 \times 380 \mathrm{~mm}$)

Item DP-3 Leneta Scrub Test Drawdown Plate

For drawdowns on Leneta Scrub Test Panels, size 6-1/2 x 17 inches. Glass surface: 7×20 in ($175 \times 500 \mathrm{~mm}$)

Information on Leneta Scrub Test Panels can be found on page 22.

Adjustable Straight Edges

These devices are designed for mounting on Leneta Drawdown Plates as guides to assure rectilinear movement of the applicator. Lateral position is adjustable to accommodate various applicator widths.

Item For Use On
 SE-1 DP-1 Standard Drawdown Plate
 SE-3 DP-3 Scrub Test Drawdown Plate

Form CP-1: Catch-Papers

These are thin lacquered papers that are placed under the bottom edge of a chart or panel to catch the surplus paint at the completion of a drawdown. Their sealed surface facilitates clean-up by preventing fast dry out of paint on the applicator, particularly important with multi-groove applicators.

	Packaging			
Form	Size	Box Quantity	Boxes Per Case	Weight Per Box
		4×8 lin		
CP-1	3×8 $75 \times 215 \mathrm{~mm}$		4	4 lb

Characteristics of Leneta Wire-Cators

1. Wire Diameters: 2.5-75 mils ($0.064-1.9 \mathrm{~mm}$), provides wet film thicknesses: 0.18-6 mils ($4.5-150 \mu \mathrm{~m}$)
2. Length of winding: 10 inches (254 mm). Sufficiently long to coat most standard size panels and charts.
3. Length of rod: 12 inches (305 mm). Provides an inch (25 mm) clear for grasping at each end.
4. Diameter of rod: $1 / 2$ inch (12.7 mm). Thick enough to provide essentially perfect rigidity.
5. Composition: All stainless steel. No rust or corrosion, even with waterborne coatings. Non-magnetic, permits use with steel panels on a magnetic chuck.

Wire-Cators Available from Stock														
Catalog	Wire Diameter		Film Thickness**		Catalog Item No.	Wire Diameter		$\underset{\text { Thickness** }}{\text { Film }}$		Catalog Item No. WC-44	Wire Diameter		Film Thickness**	
Item No.	mils*					mils*	mm	mils	$\mu \mathrm{m}$		mils*	mm	mils	$\mu \mathrm{m}$
WC-2.5	2.5	0.064	0.18	4.5	- WC-22	22	0.56	1.5	38		44	1.12	3.3	85
- WC-3	3	0.075	0.2	5	WC-24	24	0.61	1.7	42	WC-46	46	1.17	3.5	89
- WC-4	4	0.10	0.3	8	WC-26	26	0.66	1.8	47	WC-48	48	1.22	3.7	93
- WC-6	6	0.15	0.4	10	-WC-28	28	0.71	2.0	50	WC-50	50	1.27	3.8	98
- WC-8	8	0.20	0.5	13	WC-30	30	0.76	2.2	55	-WC-52	52	1.32	4.0	100
- WC-10	10	0.25	0.5 0.65	16	WC-32	32	0.81	2.3	59	WC-55	55	1.40	4.2	106
- WC-12	12	0.30	0.8	20	-WC-34	34	0.86	2.5	63	WC-60	60	1.52	4.5	114
WC-14	14	0.36	0.95	24	WC-36	36	0.91	2.7	68	WC-65	65	1.65	5.0	125
- WC-16	16	0.41	1.1	28	WC-38	38	0.97	2.8	72	WC-70	70	1.78	5.5	138
WC-18	18	0.46	1.25	32	- WC-40	40	1.02	3.0	75	WC-75	75	1.91	6.0	150
WC-20	20	0.51	1.4	35	WC-42	42	1.07	3.2	81	* Exact ** Approx	mate	- Inclu set of referre	in s Wire belo	dard ators

Item No. WC-212: Standard Set of 12 Wire-Cators and Bench Stand

Leneta Inter-Leaf Papers are thin, specially treated, non-stick sheets that protect your test chart applications from being marred by the effects of residual tack.

When stacking, shipping or storing test charts, insert Leneta Inter-Leaf Papers between the charts.

Available from stock - packed 1000 sheets per box - in the following standard Leneta Chart sizes:

Size A

Form IP-1A
$5-1 / 2 \times 10$ in
$140 \times 254 \mathrm{~mm}$

Size C

Form IP-1C
7-5/8 x 10-1/4 in $194 \times 260 \mathrm{~mm}$

Size B

Form IP-1B
$7-5 / 8 \times 11-1 / 4$ in $194 \times 286 \mathrm{~mm}$

Size K

Form IP-1K
$8-5 / 8 \times 11-1 / 4$ in
$219 \times 286 \mathrm{~mm}$

Paint-Out Starter Kit Item PSK-1

Low cost, entry level kit for making commercial quality drawdowns. Designed for facilities such as paint stores and small labs, where experience with uniform film application is minimal. This kit provides all items needed to make paint-outs at practical film thicknesses, for samples or for testing. The kit includes the following individual items:

Item DP-4 Drawdown Plate, aluminum, $9 \times 14-1 / 2$ inches, for providing a smooth level support surface.
Form WB Sealed, white drawdown charts, $7-5 / 8 \times 11-1 / 4 \mathrm{in}$, box of 250, as a standardized surface, impervious to waterborne or solventborne paints.
Form CP-PSK Catch-Papers, $3 \times 8-1 / 2 \mathrm{in}$, pad of 250 sheets, to be placed under the bottom edge of the drawdown chart to catch the excess paint at the completion of a drawdown.
Item WC-46 Wire-Cator ${ }^{\text {TM }}$ Applicator, 12 in long, $1 / 2$ in diameter, wire wound rod, for applying a uniform coating of about $3-1 / 2$ mils wet film thickness, equivalent to about 450 square feet per
 gallon, appropriate for both solventborne and waterborne paints.

LENBA

Appendix

Contents

1. Characteristics of charts and cards
2. CIE-Y Reflectance of grays
3. U.S. - Metric Conversions
4. Spreading Rate and Film Thickness
5. Equations for Spreading Rate Charts
6. Film Constants
7. Porosity by Saturant Absorption
8. Basic Hiding Power Methods
9. Kubelka-Monk (K-M) Equations
10. Sag Resistance Method (D 4400)
11. Leveling Test Method (D 4062)
12. Pre-Shear Equipment
13. Leneta in ASTM Methods

1. Characteristics of Charts and Cards

Lacquer sealer: Applied one side only; solvent resistant; non-migrating.

Black areas: Printed one side only; non-bleeding, reflectance 1% max. ${ }^{1}$ (< 2% on non-lacquered charts.)
Sealed White areas:
Color retentive; non-fluorescent
Reflectance ${ }^{1,4}$ Charts: 80-83\%
Cards: 80% min
Thickness ${ }^{2}$: Charts -12 mils (0.3 mm) Cards - 20 mils (0.5 mm)
Weightage ${ }^{2}$: Poundage Grammage $\mathrm{lb} / \mathrm{Mft}^{2} \quad \mathrm{~g} / \mathrm{m}^{2}$
Charts: $56 \quad 273$
Cards: 74361
Hole Punching ${ }^{3}$:
One hole - $1 / 4$ inch (6 mm) diameter Two holes $-3 / 8$ in (9.5 mm) diameter, $4-1 / 4$ in (108 mm) between centers.
${ }^{1}$ Measured per ASTM E 1347, 0/45 ${ }^{\circ}$ geometry
${ }^{2}$ Approximate or nominal
${ }^{3}$ Indicated by illustrations or in the text.
${ }^{4}$ Special higher brightness (87-89\%) available on request: Forms $2 \mathrm{~A}-\mathrm{H}, 2 \mathrm{C}-\mathrm{H}, 3 \mathrm{~B}-\mathrm{H}, 5 \mathrm{C}-\mathrm{H}, 1 \mathrm{~B}-\mathrm{H}$

2. CIE-Y Reflectances of Grays

Form

G\%

5DX-GW	46 ± 3
8H-GW	46 ± 3
8K-GW	46 ± 3
10H-BG	34 ± 3
M *	31 ± 3
S *	31 ± 3
$26-1 M, 26-2 M$	46 ± 3

24B, CU-1: Stripes
\#1 $\quad 76$ prox.
\#2 73 prox.
\#3 65 prox.
\#4 45 prox.
\#5 24 prox.
\#6 4 prox.

[^3]
3. U.S. - Metric Conversions

Length: 1 in $=\mathbf{2 . 5 4} \mathbf{c m}=\mathbf{2 5 . 4} \mathbf{~ m m}$
$1 \mathrm{mil}=25.4 \mu \mathrm{~m}$
$1 \mathrm{~mm}=39.37 \mathrm{mils}$
$1 \mathrm{ft}=30.48 \mathrm{~cm}=0.3048 \mathrm{~m}$
Area: $\quad 1 \mathrm{in}^{2}=6.4516 \mathrm{~cm}^{2}$
$1 \mathrm{ft}^{2}=929.0304 \mathrm{~cm}^{2}$
$1 \mathrm{~m}^{2}=10.76391 \mathrm{ft}^{2}$
Volume: $\mathrm{cc} \sim \mathrm{cm}^{3} \sim \mathrm{~mL}$; $\mathrm{L} \sim \mathrm{dm}^{3}$
$1 \mathrm{in}^{3}=16.387064 \mathrm{~mL}$
$1 \mathrm{ft}^{3}=28.3168 \mathrm{~L}$

$$
\text { = } 7.48052 \mathrm{gal}
$$

$1 \mathrm{gal}=231 \mathrm{in}^{3}=128 \mathrm{fl} \mathrm{oz}$

$$
=3785.412 \mathrm{~mL}
$$

$1 \mathrm{fl} \mathrm{oz}=29.5735 \mathrm{~mL}$
Weight: $1 \mathrm{lb}=453.59237 \mathrm{~g}$ $1 \mathrm{av} \mathrm{oz}=28.3495 \mathrm{~g}$

Density: $8.3454 \mathrm{lb} / \mathrm{gal}=1 \mathrm{~g} / \mathrm{mL}=1 \mathrm{~kg} / \mathrm{L}$
Spreading Rate:
$40.746 \mathrm{ft}^{2} / \mathrm{gal}=1 \mathrm{~m}^{2} / \mathrm{L}$
$4.8824 \mathrm{ft}^{2} / \mathrm{lb}=1 \mathrm{~m}^{2} / \mathrm{kg}$
Weightage (Weight/Area):
Poundage $\left(\mathrm{lb} / \mathrm{Mft}^{2}\right) \times 4.8824=$
Grammage ($\mathrm{g} / \mathrm{m}^{2}$)
Temperature:

$$
\begin{aligned}
& { }^{\circ} \mathrm{F}=1.8 \times{ }^{\circ} \mathrm{C}+32 \\
& { }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)
\end{aligned}
$$

Notes: (1) Relationships in bold type are exact.
(2) $1 \mathrm{gal}($ Imperial $)=1.20095 \mathrm{gal}$ (U.S.)
4. Spreading Rate and Film Thickness*
4.1 Metric Units
a) $\mathrm{H}\left(\mathrm{m}^{2} / \mathrm{L}\right) \times \mathrm{T}(\mu \mathrm{m})=1000$
b) $H\left(\mathrm{~m}^{2} / \mathrm{L}\right) \times \mathrm{t}(\mu \mathrm{m})=1000 \mathrm{ND} / \mathrm{d}$
c) $H\left(\mathrm{~m}^{2} / \mathrm{kg}\right) \times \mathrm{T}(\mu \mathrm{m})=1000 / \mathrm{D}(\mathrm{kg} / \mathrm{L})$
d) $\mathrm{H}\left(\mathrm{m}^{2} / \mathrm{kg}\right) \times \mathrm{t}(\mu \mathrm{m})=1000 \mathrm{~N} / \mathrm{d}(\mathrm{kg} / \mathrm{L})$
4.2 U.S. Units
a) $\mathrm{H}\left(\mathrm{ft}^{2} / \mathrm{gal}\right) \times \mathrm{T}(\mathrm{mil})=1604.2$
b) $\mathrm{H}\left(\mathrm{ft}^{2} / \mathrm{gal}\right) \times \mathrm{t}(\mathrm{mil})=1604.2 \mathrm{ND} / \mathrm{d}$
c) $\mathrm{H}\left(\mathrm{ft}^{2} / \mathrm{lb}\right) \times \mathrm{T}(\mathrm{mil})=1604.2 / \mathrm{D}(\mathrm{lb} / \mathrm{gal})$
d) $H\left(\mathrm{ft}^{2} / \mathrm{lb}\right) \times \mathrm{t}(\mathrm{mil})=1604.2 \mathrm{~N} / \mathrm{d}(\mathrm{lb} / \mathrm{gal})$
4.3 Dry vs Wet Film Thickness
a) $\mathrm{ND}=\mathrm{N}_{\mathrm{V}} \mathrm{d}$
b) $t=N_{v} T$
c) $\mathrm{td}=$ NTD

Where:

$$
\begin{aligned}
\mathrm{H} & =\text { spreading rate (whole paint) } \\
\mathrm{T} & =\text { wet film thickness } \\
\mathrm{t} & =\text { dry film thickness } \\
\mathrm{D} & =\text { whole paint density } \\
\mathrm{d} & =\text { dry film density } \\
\mathrm{N} & =\text { non-volatile fraction by weight } \\
\mathrm{N}_{\mathrm{V}} & =\text { non-volatile fraction by volume } \\
& * \text { non-porous films }
\end{aligned}
$$

5. Equations for Use With Leneta

 Spreading Rate ChartsLaboratory operations in grams and mL .

$$
\text { Test area is } 1000 \mathrm{~cm}^{2}\left(1.0764 \mathrm{ft}^{2}\right)
$$

5.1 Metric Units
a) $V(\mathrm{~mL})=\mathrm{T}(\mu \mathrm{m}) \div 10$
b) $\mathrm{V}(\mathrm{mL})=100 \div \mathrm{H}\left(\mathrm{m}^{2} / \mathrm{L}\right)$
c) $\mathrm{M}(\mathrm{g})=\mathrm{T}(\mu \mathrm{m}) \times \mathrm{D}(\mathrm{g} / \mathrm{mL}) \div 10$
d) $\mathrm{M}(\mathrm{g})=100 \mathrm{D}(\mathrm{g} / \mathrm{mL}) \div \mathrm{H}\left(\mathrm{m}^{2} / \mathrm{L}\right)$
e) $\mathbf{M}(\mathrm{g})=\mathrm{V}(\mathrm{m} / \mathrm{L}) \times \mathrm{D}(\mathrm{g} / \mathrm{mL})^{* *}$
5.2 Mixed Units
a) $V(\mathrm{~mL})=T($ mils $) \times 2.54$
b) $\mathrm{V}(\mathrm{mL})=4074.6 \div \mathrm{H}\left(\mathrm{ft}^{2} / \mathrm{gal}\right)$
c) $\mathrm{M}(\mathrm{g})=488 \times \mathrm{D}(\mathrm{lb} / \mathrm{gal}) \div \mathrm{H}\left(\mathrm{ft}^{2} / \mathrm{gal}\right)$
** valid for any test area.
Where: $\mathrm{T}=$ wet film thickness
$\mathrm{V}=$ volume applied
$\mathrm{H}=$ spreading rate
M = weight applied
$D=$ paint density

6. Film Constants

by Direct Measurement

$$
\begin{gathered}
N_{V}=1-\frac{D}{D_{V}}(1-N) \\
D_{N}=\frac{D_{V} N D}{D_{V}+N D-1} \\
D_{B}=\frac{w}{t} \\
P=\frac{D_{N}-D_{B}}{D_{N}}
\end{gathered}
$$

Where:
D = wet density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
$\mathrm{N}=$ non-volatile fraction by weight
$D_{V}=$ density of volatiles $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
solventborne $=0.78$
waterborne $=1.00$
$\mathrm{w}=$ dry grammage $\left(\mathrm{g} / \mathrm{m}^{2}\right)$
$\mathrm{t}=$ dry film thickness ($\mu \mathrm{m}$)
$N_{V}=$ non-volatile fraction by volume
$\mathrm{D}_{\mathrm{N}}=$ dry displacement density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
$D_{B}=$ dry bulk density ($\mathrm{g} / \mathrm{cm}^{3}$)
P = film porosity (voids/bulk)

7. Porosity by Saturant Absorption

$$
\begin{array}{r}
P=\frac{Q D_{N}}{Q D_{N}+D_{S}} \\
P=\frac{Q}{Q+R}
\end{array}
$$

Where:
$D_{N}=$ dry displacement density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
$D_{S}=$ saturant density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
$Q=$ saturant weight/film weight
$R=D_{S} / D_{N}$

LENBA

8. Basic Hiding Power Methods

8.1 Definitions - Hiding Power is defined as the Spreading Rate required for full hiding over a standard black and white substrate. The latter is specified in coatings technology to have CIE-Y reflectances of 0.01 (1\%) max. and 0.80 (80%) respectively. Sometimes substrates with other shades or color combinations are employed.

When a film is applied uniformly over a black \& white substrate, the ratio of the CIE-Y reflectance over the black area to that over the white area is its Contrast Ratio. Contrast Ratio is the photometric measure and statement of the film Opacity or Hiding.
Full hiding for visual observations means just short of total extinction of contrast. Photometrically it is defined as 0.98 Contrast Ratio.
8.2 General Procedure - The objective is to determine the spreading rate at a specified level of dry film opacity, as perceived visually or corresponding to a specified contrast ratio: $C=R_{0} / R_{0.80}$. The basic experimental procedure is to apply a uniform film on a suitable test substrate, to observe its opacity either visually or photometrically, and to determine its spreading rate. Since it is not possible to apply a film with precision at a predetermined dry opacity, several such applications need to be made over a range of spreading rates and their results plotted graphically. The spreading rate is then taken from the graph at the specified Contrast Ratio.

Conversely, the Contrast Ratio can be determined on the same graph, at a specified Spreading Rate or Film Thickness.
8.3 Spreading Rate (or Film Thickness) Determination - In both visual and photometric hiding power methods, the procedures for observing film opacity are well defined and can be performed with dispatch. The experimental task that is most demanding on the operator's time and ingenuity is to determine the spreading rate or film thickness of the applied coating with good precision. Although gages are available for measuring wet and dry film thickness directly, it is more accurate to determine the weight of dry paint film on a measured test area and then to calcu-

Appendix (continued)

late the spreading rate or film thickness from one of the following equations:
$\mathrm{H}\left(\mathrm{m}^{2} \mathrm{~L}\right)=\frac{1000}{\mathrm{~T}(\mu \mathrm{~m})}=\frac{\mathrm{A}\left(\mathrm{cm}^{2}\right) \cdot \mathrm{N} \cdot \mathrm{D}(\mathrm{kg} / \mathrm{L})}{10 \mathrm{M}(\mathrm{g})}$
$\mathrm{H}\left(\mathrm{m}^{2} / \mathrm{kg}\right)=\frac{1000 \mathrm{~N}}{\mathrm{t}(\mu \mathrm{m}) \cdot \mathrm{d}(\mathrm{kg} / \mathrm{L})}=\frac{\mathrm{A}\left(\mathrm{cm}^{2}\right) \cdot \mathrm{N}}{10 \mathrm{M}(\mathrm{g})}$
where: $\mathrm{H}=$ spreading rate
$\mathrm{T}=$ wet film thickness
$t=$ dry film thickness
A $=$ test area
$N=$ non-volatile fraction by weight
D = paint density
d = dry film density
$M=$ dry film weight
Metric values thus calculated can be converted to U.S. common units via the following relationships:

$$
\begin{align*}
& \mathrm{H}\left(\mathrm{ft}^{2} / \mathrm{gal}=40.746 \mathrm{H}\left(\mathrm{~m}^{2} / \mathrm{L}\right)\right. \tag{3}\\
& \mathrm{H}\left(\mathrm{ft}^{2} / \mathrm{lb}\right)=4.8824 \mathrm{H}\left(\mathrm{~m}^{2} / \mathrm{kg}\right) \tag{4}\\
& \mathrm{T}(\mu \mathrm{~m})=25.4 \mathrm{~T}(\mathrm{mils}) \tag{5}\\
& \mathrm{D}(\mathrm{lb} / \mathrm{gal})=8.3454 \mathrm{D}(\mathrm{~kg} / \mathrm{L}) \tag{6}
\end{align*}
$$

Powder coatings are usually considered to be volatile-free, and their dry film and powder displacement densities (d and D) equal. In that case Equation 2 becomes:

$$
\begin{equation*}
\mathrm{H}\left(\mathrm{~m}^{2} / \mathrm{kg}\right)=\frac{1000}{\mathrm{t}(\mu \mathrm{~m}) \cdot \mathrm{D}(\mathrm{~kg} / \mathrm{L})}=\frac{\mathrm{A}\left(\mathrm{~cm}^{2}\right)}{10 \mathrm{M}(\mathrm{~g})} \tag{7}
\end{equation*}
$$

This less rigorous equation avoids the need to determine d or N .

9. Kubelka-Monk (K-M) Equations

9.1 ASTM D 2805

Using equations derived from K-M theory, it is possible to calculate the contrast ratio of a coating at one spreading rate (or film thickness) from measurements made at another. On that basis several easy and accurate hiding power test methods have been developed, one being the widely referenced ASTM D 2805. The equations are complex, requiring computer solutions, but the experimental measurements are minimal. Consult the ASTM method for full details.

9.2 Calculations of R_{∞}, Reflectivity

This basic optical property of a coating is defined as "the reflectance of a film thick enough to be completely opaque". Few coatings applied at normal film thickness hide completely. Kubelka-Monk theory provides equations for calculating R_{∞} from measurements on non-opaque films applied uniformly on black and white hiding power charts, as follows:

$$
\begin{gathered}
a=\frac{1}{2}\left(R_{w}+\frac{R_{0}+W-R_{w}}{W R_{0}}\right) \\
R_{\infty}=a-\left(a^{2}-1\right)^{1 / 2}
\end{gathered}
$$

Where:
$\mathrm{R}_{0}=$ reflectance over black substrate
$\mathrm{W}=$ white substrate reflectance
$R_{w}=$ reflectance over white substrate

9.3 White Substrate Variation

For hiding power control purposes, coatings are applied on a black \& white substrate at a standard film thickness, reflectances R_{0} and R_{w} are measured, and the Contrast Ratio R_{0} / R_{w} calculated. With non-opaque films, variations in white substrate reflectance can affect the measured value of R_{w}, and therefore the contrast ratio hiding power criterion. The following Kubelka-Monk equation provides a solution to this problem, thus:

$$
R_{W}-R_{G}=\frac{(W-G)\left(R_{W}-R_{0}\right)}{W\left(1-G R_{0}\right)}
$$

Where:

$$
\begin{aligned}
& \mathrm{R}_{0}, W, \\
& \mathrm{G}= \mathrm{R}_{\mathrm{W}} \text { are as stated above. } \\
& \text { reflectectance } \\
& \text { refle substrate } \\
& \mathrm{R}_{\mathrm{G}}= \text { reflectance over alternate white } \\
& \text { substrate }
\end{aligned}
$$

Note: G could be higher or lower than W

10. Leneta Anti-Sag Meter
 ASTM Method D 4400

A. Equipment

(1) The Anti-Sag Meter, Page 24
(2) Adjustable Straight Edge, Item SE-1
(3) Drawdown Plate-Regular, Item DP-1
(4) Drawdown Charts *

Form 7B Black and white, for light colored paints.
Form WB plain white, for dark colored paints.
(5) Catch-Papers, Form CP-1
(6) Pre-shear equipment, Page 36

* With the Low Range Anti-Sag Meter a flat glass surface is preferred.
B. Preparation of Coating
(1) Stir well and adjust to $23^{\circ} \mathrm{C}\left(73.5^{\circ} \mathrm{F}\right)$
(2) Pre-shear in accordance with one of the methods described on Page 36, and test immediately thereafter.

C. Application of Coating

(1) Attach the straight-edge to the drawdown plate in a suitable position.
(2) Place a test chart on the drawdown plate under the clip.
(3) Place the Anti-Sag Meter on the chart adjacent to the clip, with its open side toward the operator and its shoulder against the straightedge.
(4) Position the catch paper.
(5) Place a suitable quantity $(8-10 \mathrm{~mL})$ of presheared paint directly in front of the blade, and drawdown uniformly at about 6 inches (150 mm) per second.
(6) Promptly fasten the drawdown to a vertical surface, with stripes horizontal like rungs in a standing ladder, left edge (thinnest stripe) at the top, and allow to dry in that position.
D. Rating the Drawdown
(1) Note the notch numbers marked on the Anti-Sag Meter and identify the corresponding stripes accordingly.
(2) Ignore the leading and trailing edges, and observe only the central $5-1 / 2$ inches (150 mm) of blade path, corresponding to the black area of form 7B.
(3) The lowest (thickest) stripe that does not touch the one below itself is referred to as the index stripe, and its notch number is the AntiSag Index of the paint.
(4) For a more precise Anti-Sag Index add to the index stripe number the product of the post-index clearance step and the fractional degree to which it has failed to merge with the next lower stripe. The fraction is estimated in accordance with the following table:

Degree of Merger	Fraction Unmerged
Complete	0
Somewhat more than half	0.25
Approximately half	0.50
Somewhat less than half	0.75

E. Practical Interpretation of Ratings

This is empirical and strongly subjective. It should be emphasized that the Anti-Sag Index is not a wet film thickness; it is the clearance of the index groove expressed in mils, and as such, approximately twice the wet film thickness of the index stripe with emphasis on approximate. Neither the Anti-Sag Index nor the estimated corresponding wet film thickness is to be construed as calling for a specific thickness in practice. It is solely a numerical comparator and acquires practical significance only on the basis of experience. When a coating is perceived as having optimum sag resistance by actual application, the AntiSag Index is then measured and thereafter becomes the sag control value for that particular formulation.
The correct Anti-Sag Index for one product might be quite different than for another. Latex paints, for example, would normally have much higher index values than solventborne coatings. The following qualitative judgements were based on observations of a series of trade sales type alkyd gloss enamels, and are given here as examples only. They are not to be considered as definitive.

Anti-Sag Index		Sag Resistance
	3	Very Poor
4		Poor
5		Poor-Fair
6		Fair
7		Fair-Good
8		Good
10		Very Good
12		Excellent

The above indices cover the range of the Standard Anti-Sag Meter, but many coatings require lower or higher index measurements. These requirements are met with Low, Medium, and High Range instruments, making it possible to measure Anti-Sag Index values from 1 to 60. See Page 24 for range descriptions.

11. Leveling Test Procedure ASTM Method D 4062

A. Equipment
(1) The Leneta Leveling Test Blade, LTB-2
(2) Drawdown Levelness Standards, LS-2
(3) Leveling Test Drawdown Plate, DP-2
(4) Drawdown Charts

Form WB, for light colored paints
Form 7B for dark colored paints
(5) Catch-Papers, Form CP-2
(6) Pre-shear equipment, Page 36

B. Preparation of Coating

(1) Stir thoroughly and adjust to $23^{\circ} \mathrm{C}$ ($73^{\circ} \mathrm{F}$).
(2) Strain, and adjust viscosity if and as necessary.
(3) Pre-shear in accordance with one of the methods described on Page 36 and test immediately thereafter.

C. Application of Coating

(1) Position a Catch-Paper on the drawdown plate.
(2) Place a chart on the drawdown plate against the left guide.
(3) Place the test blade at the top of the chart with its long arm against the left guide and toward the operator.
(4) Place $8-10 \mathrm{~mL}$ of pre-sheared coating in front of the blade and drawdown rapidly at a uniform rate of approximately 60 cm $(2 \mathrm{ft})$ per second.
(5) Allow to dry in a horizontal position at $23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$.

D. Rating the Drawdown

(1) After drying, cut out a 3×5 inch ($75 \times$ 125 mm) section, with striations parallel to the long edge.
(2) Compare with Leneta Levelness Standards under suitable oblique light.
(3) The number of the matching standard is the Leneta Drawdown Leveling Value. Rate perfect leveling as 10 and less than 1 as 0 .

E. Practical Significance of

 Numerical Values.This is based on subjective evaluations. The following table represents the collective judgement of an experienced laboratory group:

Drawdown Value	Brushout Leveling		
1			Very Poor
:---:			
2	\quad	Very Poor	
:---:	:---:		
3	Poor		
4	Poor		
5			
6	Poor-Fair		
7	Poor-Fair		
8	Fair		
9	Fair-Good		
	Good		

LENETA

12. Pre-Shear Equipment

Practical methods for applying coatings develop high shear rates and stresses that strongly influence the degree of sagging and leveling. Since drawdown blades for measuring these characteristics develop relatively low rates of shear, they require that coatings be "Pre-Sheared" to simulate practical application. This can be accomplished by rapid mechanical mixing, or by forcing the liquid through a suitable hypodermic syringe and needle. In general the former is advisable with solvent type and the latter with aqueous coatings. Following is a description of specific equipment and procedures that have been found satisfactory in connection with ASTM Method D 4400 on Sag Resistance and ASTM Method D 4062 on Leveling.

1.Solvent Coatings -

Pre-Shear by Rapid Mixing
A. Equipment:
(1) Power mixer.
(2) Item PS-1, Circular paddle, 48 mm diameter,
(3) Item PS-2, Mixing Can, 52 mm diameter,
B. Procedure:
(1) Stir coating thoroughly. Strain if necessary.
(2) Fill the mixing can approximately half.
(3) Attach the mixing paddle to the rotary mixer.
(4) Position paddle about $1 / 4$ in (6 mm) from bottom of can.
(5) Mix 1 minute then promptly place about 8 mL of paint in front of the drawdown blade.
2. Aqueous Coatings -

Pre-Shear with Syringe and Needle
A. Equipment:
(1) Item PS-3, 10 mL Luer-Lok plastic syringe,
(2) Item PS-5, 15 gauge Luer-Lok blunt syringe needle, 1.4 mm I.D., 38 mm long,
(3) Item PS-6, Vinyl tubing, 1/8 in (3.2 mm) I.D.,
B. Procedure:
(1) Stir coating thoroughly. Strain if necessary.

Appendix (continued)

(2)Cut a 2 in (50 mm) length of tubing and attach to syringe.
(3)Press the syringe plunger firmly to expel air. Dip the end of the extension tube into the coating, pump slightly to expel remaining air, then withdraw 8 mL of coating.
(4) Remove extension tubing and attach a syringe needle.
(5) Eject the contents of the syringe in front of the applicator speedily, employing steady and strong pressure.

The PS-8 Pre-Shear Sample Kit includes the following:

1 each	Item PS-1	Paddle
1 each	Item PS-2	Mixing Can
1 each	Item PS-3	Syringe
10 each	Item PS-5	Syringe Needle
10 feet	Item PS-6	Vinyl Tubing

13. Leneta Products Used in ASTM Standards
(Note: Numbers in bold are Leneta Form or Part numbers. Numbers in parenthesis are the pages where that product can be found.

Note: * Represents additional letters or numbers to identify two or more related products.)

D 344 Relative Hiding Power of Paints by Visual Evaluation of Brushouts
ASTM Volume 06.01
Product Code: 8H(6), 10H(8)
D 1653 Water Vapor Transmission of Organic Coating Films
ASTM Volume 06.01
Product Code: NWK(10), RP-1K(20)
D 2370 Tensile Properties of Organic Coatings
ASTM Volume 06.01
Product Code: RP-1K(20)
D 2486 Scrub Resistance of Wall Paints ASTM Volume 06.02
Product Code: P121-10N(22), SC-2(23)
D 2805 Hiding Power of Paints by Reflectometry
ASTM Volume 06.01
Product Code: GB-2A or B(20)
D 3258 Porosity of Paint Films
ASTM Volume 06.02
Product Code: ST-3(23)

D 3450 Washability Properties of Interior Architectural Coatings
ASTM Volume 06.02
Product Code: P121-10N(22), SC-1(23), ST-1(23)
D 3928 Evaluation of Gloss or Sheen Uniformity
ASTM Volume 06.02
Product Code: R6-1224(18)
D 4062 Leveling of Paints by DrawDown Method
ASTM Volume 06.02
Product Code: WB(9), CP-2(24),LTB-2(25),
DP-2(25),LS-2(25), 7B(25)
D 4147 Applying Coil Coatings Using a Wire-Wound Drawdown Bar
ASTM Volume 06.02
Product Code: WC-*(31)
D 4213 Scrub Resistance of Paints by Abrasion Weight Loss
ASTM Volume 06.02
Product Code: P121-10N(22), SC-1(23)
D 4400 Sag Resistance of Paints Using a Multinotch Applicator
ASTM Volume 06.02
Product Code: WB(9), WM(9), ASM-*(24), 7B(24), CP-2(25), SE-1(30), DP-1(30)

D 4708 Preparation of Uniform Free
Films of Organic Coatings
ASTM Volume 06.01
Product Code: RP-1K(20)
D 4828 Practical Washability of Organic Coatings
ASTM Volume 06.02
Product Code:P121-10N(22)
D 4941 Drawdowns of Artist's Paste
Paints
ASTM Volume 06.02
Product Code: 2A(4), 2C(4)
D 4946 Blocking Resistance of Architectural Paints
ASTM Volume 06.02
Product Code: WB(9)
D 5007 Wet-to-Dry Hiding Change
ASTM Volume 06.02
Product Code: TG-19(21), 23B(21)
D 5068 Preparation of Paint Brushes for Evaluation
ASTM Volume 06.02
Product Code: $\mathbf{8 H}(6)$
D 5150 Hiding Power of Architectural
Paints Applied by Roller
ASTM Volume 06.02
Product Code: CU-1(12)
D 6441 Hiding Power of Powder Coatings
ASTM Volume 06.02
Product Code: T12G(26), T12M(26)

Adapters, Alu-Card, 27
Alu-Cards, 19
Anti-Sag Meter, 24
Applicators
Anti-Sag, 24
Bird, 28
Dow Film Caster, 28
Leveling Test Blade, 25
Multi-Notch,
Anti-Sag, 24
Leveling Test Blade, 25
Logicator, 21
Paper-Testing Ink, 17
Trade Sales, 28
Wire-Cator, 31
Wire-Wound Rod, 31
ASTM References
D 1653 - Vapor Transmission, 10, 20
D 2370 - Tensile Strength, 20
D 2486 - Scrubbability, 22, 23
D 2805 - Hiding Power, 20
D 3258 - Porosity, 23
D 344 - Hiding Power, 6, 8
D 3450 - Washability, 22, 23
D 3928 - Uniformity, 18
D 4062 - Leveling, 9, 24, 25
D 4147 - Coil-Coating, 31
D 4213 - Scrubbing, 22, 23
D 4400 - Sagging, 24
D 4708 - Free Films, 20
D 4828 - Washability, 22
D 4941 - Artist's Paste, 4
D 4946 - Blocking, 9
D 5007 - Hiding Power, 21
D 5150 - Hiding Power, 12
D 6441 - Powder Coatings, 26
Birch Wood/Veneer Panels, 18
Bird Applicator, 28
Black \& Gray Charts, 8
Black Charts, 9, 11
Blacklite Glass Panels, 20

Brushout Cards, 9
Calibration Scrub Panels, 22
Carrara Glass Panels, 20
Catch-Papers, 25, 30
Checkerboard Charts, 8
Chevron Stripe Charts, 6, 7
Diagonal Stripe Charts, 6, 7
Diamond Stripe Charts, 6, 7
Display Charts, 6
Dow Film Caster, 28
Drawdown Blades, 21, 24, 25, 28, 31
Drawdown Plate
Leveling Test Plate, 25
Paint-Out Kit, 32
Regular, 30
Scrub Test, 30
Drawdown Rods, 31
Drawdown Sheets Ink Test, 16
Duplex Applicator Charts, 9
Free Films, 20
Glass, Black and White, 20
Gradation Charts, 12
Gray \& Black Charts, 9
Gray \& White Brushout Card, 9
Gray \& White Charts, 9
Gray Scale Charts, 12
Half-Sealed White Chart, 5
Hiding Power Methods, 34
Hole Punch, 27
Ink Drawdown Sheets, 16
Inks, Paper Testing, 17
Interleaf Paper, 32
Leveling Test Blade, 25
Levelness Standards, 25
Logicator, 21
Magnetic Spray Stands, 27
Metal Panels, 26
Metopac Panels, 26
Monitors-Spray, 15
Multi-Notch Applicators, 21, 24, 25
Opacity Charts, 4

Opacity-Display Charts, 7
Paint-Out Starter Kit, 32
Paper-Testing Inks, 17
Penetration Chart, 5
Penopac Charts, 5
Plain Black Charts, 9
Plain White Cards, 9
Plain White Chart, 9, 10
Polyester Panels, 16, 19
Pre-Shear Equipment, 36
Printing Ink Test Sheets, 16
Red \& Gray Strips, 14
Release Charts, 11
Release Paper, 20
Sag \& Leveling Chart, 24
Sag Tester, 24
Scrub Media, 23
Scrub Test Panels, 22
Silicone Release Paper, 20
Spray Monitors, 15
Spray Stand, 27
Spray Strips, 14
Spreading Rate Charts, 6, 7, 8
Staining Media, 23
Straight-Edge Guides, 30
Striped Charts, 6, 7, 10
Strips, spray-strips, 14
TG-19 Logicator, 21
Trade Sales Applicator, 28
Unlacquered Charts, 10
Upson Board, 18
Vacuum Plate, 29
Vacuum Pump, 29
Wall-Matte Charts, 13
Wax and Polish Test Chart, 10
White Cards, 9
White Charts, 9
Wire-Cators, 31
Wire-Rod Applicators, 31
Wood Panels, 18
Zebra Stripe Charts, 6, 7

Page 37

The semi-transparent nature of printing ink applications causes the substrate color to have a substantial effect on the final color of the print. An ink color control program based on instrumental color measurements therefore requires that the test substrate itself be very closely controlled. The normal batch-tobatch variations in the white area of conventional paint test charts can represent a problem in that regard when testing inks. This problem is avoided by the use of Form 402C illustrated above.

Above illustration is 45\% of true size

Form 402C has the same surface characteristics as other Leneta charts except for closer shade control in the white areas. This is accomplished by a set-aside stocking policy whereby any initial order will be refilled from the same batch for a period of at least 5 years. In this way the purchaser can expect a maximum color difference of a 0.5 CIELAB units between orders during that period, whereas ordinary batch-to-batch variations can be as much as 2 CIELAB units.

Leneta charts are coated on their printed face with a clear, impervious lacquer film, similar to a plastic in printing characteristics. The unprinted reverse side is a representative litho coated paper surface.
black and white. The charts most popular with paint stores, charts and architects are shown below. The all white charts are used when the ability of the coating to hide the substrate is being demonstrated

Form No.	Size (inches)	Box Qty
*WA	$5-1 / 2 \times 10$	250
*WB	$7-5 / 8 \times 11-1 / 4$	250
*WBX	$7-5 / 8 \times 11-1 / 4$	125
*WD	$3-7 / 8 \times 6$	1000
*WDX	$3-7 / 8 \times 6$	500
WH	$11-1 / 4 \times 17-1 / 4$	125
WHX	$11-1 / 4 \times 17-1 / 4$	75
WK	$8-5 / 8 \times 11-1 / 4$	250
WKX	$8-5 / 8 \times 11-1 / 4$	125
WM	$5-1 / 2 \times 11-1 / 4$	250
*2A	$5-1 / 2 \times 10$	250
*2C	$7-5 / 8 \times 10-1 / 4$	250
*3B	$7-5 / 8 \times 11-3 / 8$	250

X in the form number indicates a heavier, more
drawdowns, frequently used for presentation

Request catalog for other sizes and designs.
Form 3B

Larger sizes are available for faux finish applications.

LENEA The Leneta Company 15 Whitney Road Mahwah, NJ 07430
 Phone: 800-663-6324
 Fax: 201-847-9300 800-663-5154 201-848-8833

Email: psk@leneta.com Website: www.leneta.com Recognized worldwide as the leader in drawdown charts.

Story

Drawdowns are a practical way to prepare samples that represent the true color, gloss and appearance of your paint. The three primary elements for making drawdowns are:

1. A sealed paper chart.
2. A drawdown plate which provides a smooth,
level surface and holds the chart in place.
3. A drawdown bar for applying a uniform paint film.

Of the three elements, it is the drawdown chart which is most critical for making a successful drawdown. The chart should be properly sealed so the applied paint does not penetrate into the paper. The surface should be smooth and flat to produce an even, uniform paint film.

A professional drawdown can make a sale!

The Paint Out Starter Kit (Catalog No. PSK-1) provides everything you need to show your paint at its best. The following are included in this kit:

Drawdown Charts:

Level, white paperboard, 7-5/8 x 11-1/4 inches, with clear sealer. Solvent and latex paints will show their true color and gloss. Packed 250 per box.

Drawdown Plate (aluminum):

Sturdy, light weight aluminum clipboard to hold drawdown during paint application.

Drawdown Applicator:

Applies $3-1 / 2$ mil wet film, equivalent to 450 sq ft per gallon. Practical, easy to use wire-wound
rod produces level, edge to edge drawdownes.

Catch-Papers:

Thin sheets of sealed paper, placed under the bottom edge of the drawdown chart to catch excess paint for easy cleaning

Pictorial Instruction Sheet on how to produce a professional quality drawdown.

The Leneta Drawdown Charts provided in this kit are the same products used for quality control and in laboratories of most major paint companies in the world.

Technique:

Place a pool of paint in front of bar. Grasp bar at both ends and pull toward you in a smooth motion

Bird ${ }^{\oplus}$ Applicator:
Straight bar, precision machined. The following are the most frequently used by paint stores:

Item Film Wet Film Spreading Typica No. Width Thickness Ra Use (inch) (mils) (ftrlga)

AB-63	3	3	535	oil/ ename

AB-83	3	4	400	latex

$\begin{array}{lllll}\text { AB-66 } & 6 & 3 & 535 & \text { oil / enamel }\end{array}$
latex

Wire-Cator:

12 inch stainless steel rod, tightly wrapped with stainless steel wire. The paint will flow out from the grooves between the wires. The following bars are most frequently used by paint stores:

$\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$	Wet Film Thickness (mils)	Spreading Rate (ft²/gal)	Typical Use
WC-40	3.0	535	oil / enamel
WC-46	3.5	460	oil / latex
WC-52	4.0	400	latex

Drawdown Plate (glass):

A flat, smooth surface is required to apply a uniform thick-
ness of paint on a chart. The DP-1 consists of a
glass clipboard set firmly on a phenolic panel and mounted on rubber bumpers to prevent sliding while in use. Easy to use, easy to lean and found in paint labs all over the world. The glass surface is 9×12 inches

Interleaf paper:

Thin, non-stick overlay sheets for protecting paint-out samples and preventing them from sticking to other charts. Available in standard Leneta chart sizes

\mathcal{N} o matter the skin tone....

The Leneta Company is recognized internationally as the leading producer and distributor of standardized substrates for testing cosmetics, inks and other coatings.

Human skin tones vary from beige to almost black. Color cosmetics are designed to mask, enhance or modify the user's skin tone. Depending on a person's skin tone, the result of using different cosmetic colorants can vary from slight to dramatic.

A new tool for representing a variety of skin tone colors was introduced at the May 2001 meeting of the Society of Cosmetic Chemists. In a paper presented by Engelhard Corporation, Leneta Form 25C was noted as "A novel skin tone chart..." with "...excellent color shade uniformity, color density, reproducibility, non-fluorescence and surface smoothness." When cosmetics are applied on this chart, their effect with various skin tone colors can be readily evaluated, both visually and instrumentally.

For additional information on the Leneta Skin Tone Color Chart, and a description of other Leneta
charts used in the Cosmetic Industry, see the reverse side. Samples are available on request.

Phone:	$201-847-9300$	$800-663-6324$
Fax:	$201-848-8833$	$800-663-5154$
Email:	color@leneta.com	Website: www.leneta.com

Phone: 201-847-9300 800-663-6324
Email: color@leneta.com Website: www.leneta.com

Cosmetic Test Charts and Drawdown Sheets

Skin Tone Color Chart

for evaluating the impact of skin tones on the final color effect of cosmetic materials.

- Form 25C (Sealed to prevent absorption of cosmetic material by the paper.)
- Form N25C (Unsealed, allows absorption of cosmetic material by the paper.)

Backgrounds of
Skin Tone Color Chart
1-white 4-yellow beige 2-light beige 5 -light brown
3-dark beige 6-dark brown
7-black

Made from 12 mil paperboard stock
Chart size: $\quad 7-5 / 8 \times 10-1 / 4$ in
$194 \times 260 \mathrm{~mm}$
See color image on reverse side.

Form 25C \& Form N25C
$7-5 / 8 \times 10-1 / 4$ in
$194 \times 260 \mathrm{~mm}$

Sealed Charts

The test surface contains black and white areas large enough for wide aperture reflectance measurements as well as for visual opacity and color observations. Typically used for testing nail enamels.
__Made from 12 mil neutral white paperboard stock.

Form 2A
$5-1 / 2 \times 10$ in
$140 \times 254 \mathrm{~mm}$

Form 2C
$7-5 / 8 \times 10-1 / 4$ in $194 \times 260 \mathrm{~mm}$

Form 5C
$7-5 / 8 \times 10-1 / 4$ in $194 \times 260 \mathrm{~mm}$

Form 2DX
Form 5DX
$3-7 / 8 \times 6$ in ($98 \times 152 \mathrm{~mm}$)

Unsealed Charts

Available in a wide range of absorbency and texture, for testing materials such as lipsticks, foundations, creams and mascaras. The porous surface of these sheets facilitates the application of pastes and powders.

Form N2A
$5-1 / 2 \times 10$ in ($140 \times 254 \mathrm{~mm}$)

Form N2C
$7-5 / 8 \times 10-1 / 4$ in
($194 \times 260 \mathrm{~mm}$)

Sheet Size: $5 \times 7-5 / 8(127 \times 194 \mathrm{~mm})$
Padding: 100 sheets per pad

Textured Matte Finish Chart

Form 26-3M Gray \& White Form W-3M All White
$5 \times 7-5 / 8$ in ($127 \times 194 \mathrm{~mm}$)

[^0]: * Represents additional letters and/or numbers to identify two or more related products.

[^1]: * Indicates convenience hole at top. ** Specified for Dupont Paintbrush Evaluation Test

[^2]: Form 23B Logicator Chart -Typical Drawdown
 Chart Size: $7-5 / 8 \times 11-3 / 8$ in ($194 \times 289 \mathrm{~mm}$)
 Stripe Width: 0.7in (17.8 mm) Overall Film Width: 6 in (152 mm)

[^3]: * Represents additional letters and/or numbers to identify two or more related products.

